17 research outputs found

    Information flow in parameterized quantum circuits

    Full text link
    In this work, we introduce a new way to quantify information flow in quantum systems, especially for parameterized quantum circuits. We use a graph representation of the circuits and propose a new distance metric using the mutual information between gate nodes. We then present an optimization procedure for variational algorithms using paths based on the distance measure. We explore the features of the algorithm by means of the variational quantum eigensolver, in which we compute the ground state energies of the Heisenberg model. In addition, we employ the method to solve a binary classification problem using variational quantum classification. From numerical simulations, we show that our method can be successfully used for optimizing the parameterized quantum circuits primarily used in near-term algorithms. We further note that information-flow based paths can be used to improve convergence of existing stochastic gradient based methods

    Investigating the Nucleic Acid Interactions of Histone-Derived Antimicrobial Peptides

    Get PDF
    While many antimicrobial peptides (AMPs) disrupt bacterial membranes, some translocate into bacteria and interfere with intracellular processes. Buforin II and DesHDAP1 are thought to kill bacteria by interacting with nucleic acids. Molecular modeling and experimental measurements were used to show that neither nucleic acid binding peptide selectively binds DNA sequences. Simulations and experiments also showed that changing lysines to arginines enhances DNA binding, suggesting that including additional guanidinium groups is a potential strategy to engineer more potent AMPs. Moreover, the lack of binding specificity may make it more difficult for bacteria to evolve resistance to these and other similar AMPs

    Fault-tolerant quantum computation of molecular observables

    Get PDF
    Over the past three decades significant reductions have been made to the cost of estimating ground-state energies of molecular Hamiltonians with quantum computers. However, comparatively little attention has been paid to estimating the expectation values of other observables with respect to said ground states, which is important for many industrial applications. In this work we present a novel expectation value estimation (EVE) quantum algorithm which can be applied to estimate the expectation values of arbitrary observables with respect to any of the system's eigenstates. In particular, we consider two variants of EVE: std-EVE, based on standard quantum phase estimation, and QSP-EVE, which utilizes quantum signal processing (QSP) techniques. We provide rigorous error analysis for both both variants and minimize the number of individual phase factors for QSPEVE. These error analyses enable us to produce constant-factor quantum resource estimates for both std-EVE and QSP-EVE across a variety of molecular systems and observables. For the systems considered, we show that QSP-EVE reduces (Toffoli) gate counts by up to three orders of magnitude and reduces qubit width by up to 25% compared to std-EVE. While estimated resource counts remain far too high for the first generations of fault-tolerant quantum computers, our estimates mark a first of their kind for both the application of expectation value estimation and modern QSP-based techniques

    OpenFermion: The Electronic Structure Package for Quantum Computers

    Get PDF
    Quantum simulation of chemistry and materials is predicted to be an important application for both near-term and fault-tolerant quantum devices. However, at present, developing and studying algorithms for these problems can be difficult due to the prohibitive amount of domain knowledge required in both the area of chemistry and quantum algorithms. To help bridge this gap and open the field to more researchers, we have developed the OpenFermion software package (www.openfermion.org). OpenFermion is an open-source software library written largely in Python under an Apache 2.0 license, aimed at enabling the simulation of fermionic models and quantum chemistry problems on quantum hardware. Beginning with an interface to common electronic structure packages, it simplifies the translation between a molecular specification and a quantum circuit for solving or studying the electronic structure problem on a quantum computer, minimizing the amount of domain expertise required to enter the field. The package is designed to be extensible and robust, maintaining high software standards in documentation and testing. This release paper outlines the key motivations behind design choices in OpenFermion and discusses some basic OpenFermion functionality which we believe will aid the community in the development of better quantum algorithms and tools for this exciting area of research.Comment: 22 page

    State Preparation Boosters for Early Fault-Tolerant Quantum Computation

    Full text link
    Quantum computing is believed to be particularly useful for the simulation of chemistry and materials, among the various applications. In recent years, there have been significant advancements in the development of near-term quantum algorithms for quantum simulation, including VQE and many of its variants. However, for such algorithms to be useful, they need to overcome several critical barriers including the inability to prepare high-quality approximations of the ground state. Current challenges to state preparation, including barren plateaus and the high-dimensionality of the optimization landscape, make state preparation through ansatz optimization unreliable. In this work, we introduce the method of ground state boosting, which uses a limited-depth quantum circuit to reliably increase the overlap with the ground state. This circuit, which we call a booster, can be used to augment an ansatz from VQE or be used as a stand-alone state preparation method. The booster converts circuit depth into ground state overlap in a controllable manner. We numerically demonstrate the capabilities of boosters by simulating the performance of a particular type of booster, namely the Gaussian booster, for preparing the ground state of N2N_2 molecular system. Beyond ground state preparation as a direct objective, many quantum algorithms, such as quantum phase estimation, rely on high-quality state preparation as a subroutine. Therefore, we foresee ground state boosting and similar methods as becoming essential algorithmic components as the field transitions into using early fault-tolerant quantum computers.Comment: Minor chang
    corecore